Tight wavelet frames in Lebesgue and Sobolev spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tight wavelet frames in Lebesgue and Sobolev spaces by Lasse Borup , Rémi Gribonval and Morten Nielsen

We study tight wavelet frame systems in Lp(R), and prove that such systems (under mild hypotheses) give atomic decompositions of L p(R) for 1 < p < . We also characterize Lp(R) and Sobolev space norms by the analysis coefficients for the frame. We consider Jackson inequalities for best mterm approximation with the systems in Lp(R) and prove that such inequalities exist. Moreover, it is proved t...

متن کامل

Nonstational Dual Wavelet Frames in Sobolev Spaces

In view of the good properties of nonstationary wavelet frames and the better flexibility of wavelets in Sobolev spaces, the nonstationary dual wavelet frames in a pair of dual Sobolev spaces are studied in this paper. We mainly give the oblique extension principle and the mixed extension principle for nonstationary dual wavelet frames in a pair of dual Sobolev spaces H(R) and H−s(Rd). Keywords...

متن کامل

Dual Wavelet Frames and Riesz Bases in Sobolev Spaces

This paper generalizes the mixed extension principle in L2(R) of [50] to a pair of dual Sobolev spaces H(R) and H−s(Rd). In terms of masks for φ, ψ, . . . , ψ ∈ H(R) and φ̃, ψ̃, . . . , ψ̃ ∈ H−s(Rd), simple sufficient conditions are given to ensure that (X(φ;ψ, . . . , ψ), X−s(φ̃; ψ̃, . . . , ψ̃)) forms a pair of dual wavelet frames in (Hs(Rd),H−s(Rd)), where X(φ;ψ, . . . , ψ) := {φ(· − k) : k ∈ Zd} ...

متن کامل

Characterization of Sobolev Spaces of Arbitrary Smoothness Using Nonstationary Tight Wavelet Frames

In this paper we shall characterize Sobolev spaces of an arbitrary order of smoothness using nonstationary tight wavelet frames for L2(R). In particular, we show that a Sobolev space of an arbitrary fixed order of smoothness can be characterized in terms of the weighted `2-norm of the analysis wavelet coefficient sequences using a fixed compactly supported nonstationary tight wavelet frame in L...

متن کامل

Spanning and Sampling in Lebesgue and Sobolev Spaces

We establish conditions on ψ under which the small-scale affine system {ψ(ajx− k) : j ≥ J, k ∈ Zd} spans the Lebesgue space L(R) and the Sobolev space W(R), for 1 ≤ p < ∞ and J ∈ Z. The dilation matrices aj are expanding (meaning limj→∞ ‖a−1 j ‖ = 0) but they need not be diagonal. For spanning L our result assumes ∫ Rd ψ dx 6= 0 and, when p > 1, that the periodization of |ψ| or of 1{ψ 6=0} is b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Function Spaces and Applications

سال: 2004

ISSN: 0972-6802

DOI: 10.1155/2004/792493